Inverse problems of generalized projection operators

نویسندگان

  • Mikko Kaasalainen
  • Lars Lamberg
  • L Lamberg
چکیده

We introduce the concept of generalized projection operators, i.e., projection integrals over a body in R that generalize the usual result of projected area in a given direction by taking into account shadowing and scattering effects as well as additional convolution functions in the integral. Such operators arise naturally in connection with various observation instruments and data types. We review and discuss some properties of these operators and the related inverse problems, particularly in the cases pertaining to photometric and radar data. We also prove an ambiguity theorem for a special observing geometry common in astrophysics, and uniqueness theorems for radar inverse problems of a spherical target. These theorems are obtained by employing the intrinsic rotational properties of the observing geometries and function representations. We then present examples of the mathematical modelling of the shape and rotation state of a body by simultaneously using complementary data sources corresponding to different generalized projection operators. We show that generalized projection operators unify a number of mathematical considerations and physical observation types under the same concept.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Forward-Backward Projection Algorithm for Approximating of the Zero of the ‎S‎um of ‎T‎wo Operators

‎I‎n this paper‎, ‎a‎ forward-‎b‎ackward projection algorithm is considered for finding zero points of the sum of two operators‎ ‎in Hilbert spaces‎. ‎The sequence generated by algorithm converges strongly to the zero point of the sum of an $alpha$-inverse strongly‎ ‎monotone operator and a maximal monotone operator‎. ‎We apply the result for solving the variational inequality problem, fixed po...

متن کامل

Generalized inverses in certain Banach algebras of operators∗

Let X be a Banach space and T be a bounded linear operator from X to itself (T ∈ B(X).) An operator S ∈ B(X) is a generalized inverse of T if TST = T . In this paper we look at several Banach algebras of operators and characterize when an operator in that algebra has a generalized inverse that is also in the algebra. Also, Drazin inverses will be related to generalized inverses and spectral pro...

متن کامل

Common Zero Points of Two Finite Families of Maximal Monotone Operators via Proximal Point Algorithms

In this work, it is presented iterative schemes for achieving to common points of the solutions set of the system of generalized mixed equilibrium problems, solutions set of the variational inequality for an inverse-strongly monotone operator, common fixed points set of two infinite sequences of relatively nonexpansive mappings and common zero points set of two finite sequences of maximal monot...

متن کامل

Approximating fixed points for nonexpansive mappings and generalized mixed equilibrium problems in Banach spaces

We introduce a new iterative scheme for nding a common elementof the solutions set of a generalized mixed equilibrium problem and the xedpoints set of an innitely countable family of nonexpansive mappings in a Banachspace setting. Strong convergence theorems of the proposed iterative scheme arealso established by the generalized projection method. Our results generalize thecorresponding results...

متن کامل

Generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral operators for multicriteria decision making

The interval-valued intuitionistic fuzzy set (IVIFS) which is an extension of the Atanassov’s intuitionistic fuzzy set is a powerful tool for modeling real life decision making problems. In this paper, we propose the emph{generalized interval-valued intuitionistic fuzzy Hamacher generalized Shapley Choquet integral} (GIVIFHGSCI) and the emph{interval-valued intuitionistic fuzzy Hamacher general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006